Source code for pint.quantity

"""
    pint.quantity
    ~~~~~~~~~~~~~

    :copyright: 2016 by Pint Authors, see AUTHORS for more details.
    :license: BSD, see LICENSE for more details.
"""

from __future__ import annotations

import bisect
import copy
import datetime
import functools
import locale
import math
import numbers
import operator
import re
import warnings
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Generic,
    Iterable,
    Iterator,
    List,
    Optional,
    Sequence,
    Tuple,
    Type,
    TypeVar,
    Union,
    overload,
)

from ._typing import S, Shape, UnitLike, _MagnitudeType
from .compat import (
    HAS_NUMPY,
    _to_magnitude,
    babel_parse,
    compute,
    dask_array,
    eq,
    is_duck_array_type,
    is_upcast_type,
    ndarray,
    np,
    persist,
    visualize,
    zero_or_nan,
)
from .definitions import UnitDefinition
from .errors import (
    DimensionalityError,
    OffsetUnitCalculusError,
    PintTypeError,
    UnitStrippedWarning,
)
from .formatting import (
    _pretty_fmt_exponent,
    extract_custom_flags,
    ndarray_to_latex,
    remove_custom_flags,
    siunitx_format_unit,
)
from .numpy_func import (
    HANDLED_UFUNCS,
    copy_units_output_ufuncs,
    get_op_output_unit,
    matching_input_copy_units_output_ufuncs,
    matching_input_set_units_output_ufuncs,
    numpy_wrap,
    op_units_output_ufuncs,
    set_units_ufuncs,
)
from .util import (
    PrettyIPython,
    SharedRegistryObject,
    UnitsContainer,
    infer_base_unit,
    iterable,
    logger,
    to_units_container,
)

if TYPE_CHECKING:
    from . import Context, Unit
    from .registry import BaseRegistry
    from .unit import UnitsContainer as UnitsContainerT

    if HAS_NUMPY:
        import numpy as np  # noqa


class _Exception(Exception):  # pragma: no cover
    def __init__(self, internal):
        self.internal = internal


def reduce_dimensions(f):
    def wrapped(self, *args, **kwargs):
        result = f(self, *args, **kwargs)
        try:
            if result._REGISTRY.auto_reduce_dimensions:
                return result.to_reduced_units()
            else:
                return result
        except AttributeError:
            return result

    return wrapped


def ireduce_dimensions(f):
    def wrapped(self, *args, **kwargs):
        result = f(self, *args, **kwargs)
        try:
            if result._REGISTRY.auto_reduce_dimensions:
                result.ito_reduced_units()
        except AttributeError:
            pass
        return result

    return wrapped


def check_implemented(f):
    def wrapped(self, *args, **kwargs):
        other = args[0]
        if is_upcast_type(type(other)):
            return NotImplemented
        # pandas often gets to arrays of quantities [ Q_(1,"m"), Q_(2,"m")]
        # and expects Quantity * array[Quantity] should return NotImplemented
        elif isinstance(other, list) and other and isinstance(other[0], type(self)):
            return NotImplemented
        return f(self, *args, **kwargs)

    return wrapped


def method_wraps(numpy_func):
    if isinstance(numpy_func, str):
        numpy_func = getattr(np, numpy_func, None)

    def wrapper(func):
        func.__wrapped__ = numpy_func

        return func

    return wrapper


def check_dask_array(f):
    @functools.wraps(f)
    def wrapper(self, *args, **kwargs):
        if isinstance(self._magnitude, dask_array.Array):
            return f(self, *args, **kwargs)
        else:
            msg = "Method {} only implemented for objects of {}, not {}".format(
                f.__name__, dask_array.Array, self._magnitude.__class__
            )
            raise AttributeError(msg)

    return wrapper


# Workaround to bypass dynamically generated Quantity with overload method
Magnitude = TypeVar("Magnitude")


[docs]class Quantity(PrettyIPython, SharedRegistryObject, Generic[_MagnitudeType]): """Implements a class to describe a physical quantity: the product of a numerical value and a unit of measurement. Parameters ---------- value : str, pint.Quantity or any numeric type Value of the physical quantity to be created. units : UnitsContainer, str or pint.Quantity Units of the physical quantity to be created. Returns ------- """ #: Default formatting string. default_format: str = "" _magnitude: _MagnitudeType @property def force_ndarray(self) -> bool: return self._REGISTRY.force_ndarray @property def force_ndarray_like(self) -> bool: return self._REGISTRY.force_ndarray_like @property def UnitsContainer(self) -> Callable[..., UnitsContainerT]: return self._REGISTRY.UnitsContainer def __reduce__(self) -> tuple: """Allow pickling quantities. Since UnitRegistries are not pickled, upon unpickling the new object is always attached to the application registry. """ from . import _unpickle_quantity # Note: type(self) would be a mistake as subclasses built by # build_quantity_class can't be pickled return _unpickle_quantity, (Quantity, self.magnitude, self._units) @overload def __new__( cls, value: str, units: Optional[UnitLike] = None ) -> Quantity[Magnitude]: ... @overload def __new__( # type: ignore[misc] cls, value: Sequence, units: Optional[UnitLike] = None ) -> Quantity[np.ndarray]: ... @overload def __new__( cls, value: Quantity[Magnitude], units: Optional[UnitLike] = None ) -> Quantity[Magnitude]: ... @overload def __new__( cls, value: Magnitude, units: Optional[UnitLike] = None ) -> Quantity[Magnitude]: ... def __new__(cls, value, units=None): if is_upcast_type(type(value)): raise TypeError(f"Quantity cannot wrap upcast type {type(value)}") if units is None and isinstance(value, str) and value == "": raise ValueError( "Expression to parse as Quantity cannot be an empty string." ) if units is None and isinstance(value, str): ureg = SharedRegistryObject.__new__(cls)._REGISTRY inst = ureg.parse_expression(value) return cls.__new__(cls, inst) if units is None and isinstance(value, cls): return copy.copy(value) inst = SharedRegistryObject().__new__(cls) if units is None: units = inst.UnitsContainer() else: if isinstance(units, (UnitsContainer, UnitDefinition)): units = units elif isinstance(units, str): units = inst._REGISTRY.parse_units(units)._units elif isinstance(units, SharedRegistryObject): if isinstance(units, Quantity) and units.magnitude != 1: units = copy.copy(units)._units logger.warning( "Creating new Quantity using a non unity Quantity as units." ) else: units = units._units else: raise TypeError( "units must be of type str, Quantity or " "UnitsContainer; not {}.".format(type(units)) ) if isinstance(value, cls): magnitude = value.to(units)._magnitude else: magnitude = _to_magnitude( value, inst.force_ndarray, inst.force_ndarray_like ) inst._magnitude = magnitude inst._units = units inst.__used = False inst.__handling = None return inst @property def debug_used(self): return self.__used def __iter__(self: Quantity[Iterable[S]]) -> Iterator[S]: # Make sure that, if self.magnitude is not iterable, we raise TypeError as soon # as one calls iter(self) without waiting for the first element to be drawn from # the iterator it_magnitude = iter(self.magnitude) def it_outer(): for element in it_magnitude: yield self.__class__(element, self._units) return it_outer() def __copy__(self) -> Quantity[_MagnitudeType]: ret = self.__class__(copy.copy(self._magnitude), self._units) ret.__used = self.__used return ret def __deepcopy__(self, memo) -> Quantity[_MagnitudeType]: ret = self.__class__( copy.deepcopy(self._magnitude, memo), copy.deepcopy(self._units, memo) ) ret.__used = self.__used return ret def __str__(self) -> str: if self._REGISTRY.fmt_locale is not None: return self.format_babel() return format(self) def __bytes__(self) -> bytes: return str(self).encode(locale.getpreferredencoding()) def __repr__(self) -> str: if isinstance(self._magnitude, float): return f"<Quantity({self._magnitude:.9}, '{self._units}')>" else: return f"<Quantity({self._magnitude}, '{self._units}')>" def __hash__(self) -> int: self_base = self.to_base_units() if self_base.dimensionless: return hash(self_base.magnitude) else: return hash((self_base.__class__, self_base.magnitude, self_base.units)) _exp_pattern = re.compile(r"([0-9]\.?[0-9]*)e(-?)\+?0*([0-9]+)") def __format__(self, spec: str) -> str: if self._REGISTRY.fmt_locale is not None: return self.format_babel(spec) mspec = remove_custom_flags(spec) uspec = extract_custom_flags(spec) default_mspec = remove_custom_flags(self.default_format) default_uspec = extract_custom_flags(self.default_format) if spec: if not uspec and default_uspec: warnings.warn( ( "The given format spec does not contain a unit formatter." " Falling back to the builtin defaults, but in the future" " the unit formatter specified in the `default_format`" " attribute will be used instead." ), DeprecationWarning, ) if not mspec and default_mspec: warnings.warn( ( "The given format spec does not contain a magnitude formatter." " Falling back to the builtin defaults, but in the future" " the magnitude formatter specified in the `default_format`" " attribute will be used instead." ), DeprecationWarning, ) else: mspec, uspec = default_mspec, default_uspec # If Compact is selected, do it at the beginning if "#" in spec: # TODO: don't replace '#' mspec = mspec.replace("#", "") uspec = uspec.replace("#", "") obj = self.to_compact() else: obj = self if "L" in uspec: allf = plain_allf = r"{}\ {}" elif "H" in uspec: allf = plain_allf = "{} {}" if iterable(obj.magnitude): # Use HTML table instead of plain text template for array-likes allf = ( "<table><tbody>" "<tr><th>Magnitude</th>" "<td style='text-align:left;'>{}</td></tr>" "<tr><th>Units</th><td style='text-align:left;'>{}</td></tr>" "</tbody></table>" ) else: allf = plain_allf = "{} {}" if "Lx" in uspec: # the LaTeX siunitx code # TODO: add support for extracting options opts = "" ustr = siunitx_format_unit(obj.units._units, obj._REGISTRY) allf = r"\SI[%s]{{{}}}{{{}}}" % opts else: # Hand off to unit formatting # TODO: only use `uspec` after completing the deprecation cycle ustr = format(obj.units, mspec + uspec) # mspec = remove_custom_flags(spec) if "H" in uspec: # HTML formatting if hasattr(obj.magnitude, "_repr_html_"): # If magnitude has an HTML repr, nest it within Pint's mstr = obj.magnitude._repr_html_() else: if isinstance(self.magnitude, ndarray): # Use custom ndarray text formatting with monospace font formatter = "{{:{}}}".format(mspec) # Need to override for scalars, which are detected as iterable, # and don't respond to printoptions. if self.magnitude.ndim == 0: allf = plain_allf = "{} {}" mstr = formatter.format(obj.magnitude) else: with np.printoptions( formatter={"float_kind": formatter.format} ): mstr = ( "<pre>" + format(obj.magnitude).replace("\n", "<br>") + "</pre>" ) elif not iterable(obj.magnitude): # Use plain text for scalars mstr = format(obj.magnitude, mspec) else: # Use monospace font for other array-likes mstr = ( "<pre>" + format(obj.magnitude, mspec).replace("\n", "<br>") + "</pre>" ) elif isinstance(self.magnitude, ndarray): if "L" in uspec: # Use ndarray LaTeX special formatting mstr = ndarray_to_latex(obj.magnitude, mspec) else: # Use custom ndarray text formatting--need to handle scalars differently # since they don't respond to printoptions formatter = "{{:{}}}".format(mspec) if obj.magnitude.ndim == 0: mstr = formatter.format(obj.magnitude) else: with np.printoptions(formatter={"float_kind": formatter.format}): mstr = format(obj.magnitude).replace("\n", "") else: mstr = format(obj.magnitude, mspec).replace("\n", "") if "L" in uspec: mstr = self._exp_pattern.sub(r"\1\\times 10^{\2\3}", mstr) elif "H" in uspec or "P" in uspec: m = self._exp_pattern.match(mstr) _exp_formatter = ( _pretty_fmt_exponent if "P" in uspec else lambda s: f"<sup>{s}</sup>" ) if m: exp = int(m.group(2) + m.group(3)) mstr = self._exp_pattern.sub(r"\1×10" + _exp_formatter(exp), mstr) if allf == plain_allf and ustr.startswith("1 /"): # Write e.g. "3 / s" instead of "3 1 / s" ustr = ustr[2:] return allf.format(mstr, ustr).strip() def _repr_pretty_(self, p, cycle): if cycle: super()._repr_pretty_(p, cycle) else: p.pretty(self.magnitude) p.text(" ") p.pretty(self.units) def format_babel(self, spec: str = "", **kwspec: Any) -> str: spec = spec or self.default_format # standard cases if "#" in spec: spec = spec.replace("#", "") obj = self.to_compact() else: obj = self kwspec = dict(kwspec) if "length" in kwspec: kwspec["babel_length"] = kwspec.pop("length") loc = kwspec.get("locale", self._REGISTRY.fmt_locale) if loc is None: raise ValueError("Provide a `locale` value to localize translation.") kwspec["locale"] = babel_parse(loc) kwspec["babel_plural_form"] = kwspec["locale"].plural_form(obj.magnitude) return "{} {}".format( format(obj.magnitude, remove_custom_flags(spec)), obj.units.format_babel(spec, **kwspec), ).replace("\n", "") @property def magnitude(self) -> _MagnitudeType: """Quantity's magnitude. Long form for `m`""" return self._magnitude @property def m(self) -> _MagnitudeType: """Quantity's magnitude. Short form for `magnitude`""" return self._magnitude def m_as(self, units) -> _MagnitudeType: """Quantity's magnitude expressed in particular units. Parameters ---------- units : pint.Quantity, str or dict destination units Returns ------- """ return self.to(units).magnitude @property def units(self) -> "Unit": """Quantity's units. Long form for `u`""" return self._REGISTRY.Unit(self._units) @property def u(self) -> "Unit": """Quantity's units. Short form for `units`""" return self._REGISTRY.Unit(self._units) @property def unitless(self) -> bool: """ """ return not bool(self.to_root_units()._units) @property def dimensionless(self) -> bool: """ """ tmp = self.to_root_units() return not bool(tmp.dimensionality) _dimensionality: Optional[UnitsContainerT] = None @property def dimensionality(self) -> UnitsContainerT: """ Returns ------- dict Dimensionality of the Quantity, e.g. ``{length: 1, time: -1}`` """ if self._dimensionality is None: self._dimensionality = self._REGISTRY._get_dimensionality(self._units) return self._dimensionality def check(self, dimension: UnitLike) -> bool: """Return true if the quantity's dimension matches passed dimension.""" return self.dimensionality == self._REGISTRY.get_dimensionality(dimension) @classmethod def from_list(cls, quant_list: List[Quantity], units=None) -> Quantity[np.ndarray]: """Transforms a list of Quantities into an numpy.array quantity. If no units are specified, the unit of the first element will be used. Same as from_sequence. If units is not specified and list is empty, the unit cannot be determined and a ValueError is raised. Parameters ---------- quant_list : list of pint.Quantity list of pint.Quantity units : UnitsContainer, str or pint.Quantity units of the physical quantity to be created (Default value = None) Returns ------- pint.Quantity """ return cls.from_sequence(quant_list, units=units) @classmethod def from_sequence(cls, seq: Sequence[Quantity], units=None) -> Quantity[np.ndarray]: """Transforms a sequence of Quantities into an numpy.array quantity. If no units are specified, the unit of the first element will be used. If units is not specified and sequence is empty, the unit cannot be determined and a ValueError is raised. Parameters ---------- seq : sequence of pint.Quantity sequence of pint.Quantity units : UnitsContainer, str or pint.Quantity units of the physical quantity to be created (Default value = None) Returns ------- pint.Quantity """ len_seq = len(seq) if units is None: if len_seq: units = seq[0].u else: raise ValueError("Cannot determine units from empty sequence!") a = np.empty(len_seq) for i, seq_i in enumerate(seq): a[i] = seq_i.m_as(units) # raises DimensionalityError if incompatible units are used in the sequence return cls(a, units) @classmethod def from_tuple(cls, tup): return cls(tup[0], cls._REGISTRY.UnitsContainer(tup[1])) def to_tuple(self) -> Tuple[_MagnitudeType, Tuple[Tuple[str]]]: return self.m, tuple(self._units.items()) def compatible_units(self, *contexts): if contexts: with self._REGISTRY.context(*contexts): return self._REGISTRY.get_compatible_units(self._units) return self._REGISTRY.get_compatible_units(self._units) def is_compatible_with( self, other: Any, *contexts: Union[str, Context], **ctx_kwargs: Any ) -> bool: """check if the other object is compatible Parameters ---------- other The object to check. Treated as dimensionless if not a Quantity, Unit or str. *contexts : str or pint.Context Contexts to use in the transformation. **ctx_kwargs : Values for the Context/s Returns ------- bool """ from .unit import Unit if contexts or self._REGISTRY._active_ctx: try: self.to(other, *contexts, **ctx_kwargs) return True except DimensionalityError: return False if isinstance(other, (Quantity, Unit)): return self.dimensionality == other.dimensionality if isinstance(other, str): return ( self.dimensionality == self._REGISTRY.parse_units(other).dimensionality ) return self.dimensionless def _convert_magnitude_not_inplace(self, other, *contexts, **ctx_kwargs): if contexts: with self._REGISTRY.context(*contexts, **ctx_kwargs): return self._REGISTRY.convert(self._magnitude, self._units, other) return self._REGISTRY.convert(self._magnitude, self._units, other) def _convert_magnitude(self, other, *contexts, **ctx_kwargs): if contexts: with self._REGISTRY.context(*contexts, **ctx_kwargs): return self._REGISTRY.convert(self._magnitude, self._units, other) return self._REGISTRY.convert( self._magnitude, self._units, other, inplace=is_duck_array_type(type(self._magnitude)), ) def ito(self, other=None, *contexts, **ctx_kwargs) -> None: """Inplace rescale to different units. Parameters ---------- other : pint.Quantity, str or dict Destination units. (Default value = None) *contexts : str or pint.Context Contexts to use in the transformation. **ctx_kwargs : Values for the Context/s """ other = to_units_container(other, self._REGISTRY) self._magnitude = self._convert_magnitude(other, *contexts, **ctx_kwargs) self._units = other return None def to(self, other=None, *contexts, **ctx_kwargs) -> Quantity[_MagnitudeType]: """Return Quantity rescaled to different units. Parameters ---------- other : pint.Quantity, str or dict destination units. (Default value = None) *contexts : str or pint.Context Contexts to use in the transformation. **ctx_kwargs : Values for the Context/s Returns ------- pint.Quantity """ other = to_units_container(other, self._REGISTRY) magnitude = self._convert_magnitude_not_inplace(other, *contexts, **ctx_kwargs) return self.__class__(magnitude, other) def ito_root_units(self) -> None: """Return Quantity rescaled to root units.""" _, other = self._REGISTRY._get_root_units(self._units) self._magnitude = self._convert_magnitude(other) self._units = other return None def to_root_units(self) -> Quantity[_MagnitudeType]: """Return Quantity rescaled to root units.""" _, other = self._REGISTRY._get_root_units(self._units) magnitude = self._convert_magnitude_not_inplace(other) return self.__class__(magnitude, other) def ito_base_units(self) -> None: """Return Quantity rescaled to base units.""" _, other = self._REGISTRY._get_base_units(self._units) self._magnitude = self._convert_magnitude(other) self._units = other return None def to_base_units(self) -> Quantity[_MagnitudeType]: """Return Quantity rescaled to base units.""" _, other = self._REGISTRY._get_base_units(self._units) magnitude = self._convert_magnitude_not_inplace(other) return self.__class__(magnitude, other) def _get_reduced_units(self, units): # loop through individual units and compare to each other unit # can we do better than a nested loop here? for unit1, exp in units.items(): # make sure it wasn't already reduced to zero exponent on prior pass if unit1 not in units: continue for unit2 in units: # get exponent after reduction exp = units[unit1] if unit1 != unit2: power = self._REGISTRY._get_dimensionality_ratio(unit1, unit2) if power: units = units.add(unit2, exp / power).remove([unit1]) break return units def ito_reduced_units(self) -> None: """Return Quantity scaled in place to reduced units, i.e. one unit per dimension. This will not reduce compound units (e.g., 'J/kg' will not be reduced to m**2/s**2), nor can it make use of contexts at this time. """ # shortcuts in case we're dimensionless or only a single unit if self.dimensionless: return self.ito({}) if len(self._units) == 1: return None units = self._units.copy() new_units = self._get_reduced_units(units) return self.ito(new_units) def to_reduced_units(self) -> Quantity[_MagnitudeType]: """Return Quantity scaled in place to reduced units, i.e. one unit per dimension. This will not reduce compound units (intentionally), nor can it make use of contexts at this time. """ # shortcuts in case we're dimensionless or only a single unit if self.dimensionless: return self.to({}) if len(self._units) == 1: return self units = self._units.copy() new_units = self._get_reduced_units(units) return self.to(new_units) def to_compact(self, unit=None) -> Quantity[_MagnitudeType]: """ "Return Quantity rescaled to compact, human-readable units. To get output in terms of a different unit, use the unit parameter. Examples -------- >>> import pint >>> ureg = pint.UnitRegistry() >>> (200e-9*ureg.s).to_compact() <Quantity(200.0, 'nanosecond')> >>> (1e-2*ureg('kg m/s^2')).to_compact('N') <Quantity(10.0, 'millinewton')> """ if not isinstance(self.magnitude, numbers.Number): msg = ( "to_compact applied to non numerical types " "has an undefined behavior." ) w = RuntimeWarning(msg) warnings.warn(w, stacklevel=2) return self if ( self.unitless or self.magnitude == 0 or math.isnan(self.magnitude) or math.isinf(self.magnitude) ): return self SI_prefixes: Dict[int, str] = {} for prefix in self._REGISTRY._prefixes.values(): try: scale = prefix.converter.scale # Kludgy way to check if this is an SI prefix log10_scale = int(math.log10(scale)) if log10_scale == math.log10(scale): SI_prefixes[log10_scale] = prefix.name except Exception: SI_prefixes[0] = "" SI_prefixes_list = sorted(SI_prefixes.items()) SI_powers = [item[0] for item in SI_prefixes_list] SI_bases = [item[1] for item in SI_prefixes_list] if unit is None: unit = infer_base_unit(self, registry=self._REGISTRY) else: unit = infer_base_unit(self.__class__(1, unit), registry=self._REGISTRY) q_base = self.to(unit) magnitude = q_base.magnitude units = list(q_base._units.items()) units_numerator = [a for a in units if a[1] > 0] if len(units_numerator) > 0: unit_str, unit_power = units_numerator[0] else: unit_str, unit_power = units[0] if unit_power > 0: power = math.floor(math.log10(abs(magnitude)) / float(unit_power) / 3) * 3 else: power = math.ceil(math.log10(abs(magnitude)) / float(unit_power) / 3) * 3 index = bisect.bisect_left(SI_powers, power) if index >= len(SI_bases): index = -1 prefix_str = SI_bases[index] new_unit_str = prefix_str + unit_str new_unit_container = q_base._units.rename(unit_str, new_unit_str) return self.to(new_unit_container) # Mathematical operations def __int__(self) -> int: if self.dimensionless: return int(self._convert_magnitude_not_inplace(UnitsContainer())) raise DimensionalityError(self._units, "dimensionless") def __float__(self) -> float: if self.dimensionless: return float(self._convert_magnitude_not_inplace(UnitsContainer())) raise DimensionalityError(self._units, "dimensionless") def __complex__(self) -> complex: if self.dimensionless: return complex(self._convert_magnitude_not_inplace(UnitsContainer())) raise DimensionalityError(self._units, "dimensionless") @check_implemented def _iadd_sub(self, other, op): """Perform addition or subtraction operation in-place and return the result. Parameters ---------- other : pint.Quantity or any type accepted by :func:`_to_magnitude` object to be added to / subtracted from self op : function operator function (e.g. operator.add, operator.isub) """ if not self._check(other): # other not from same Registry or not a Quantity try: other_magnitude = _to_magnitude( other, self.force_ndarray, self.force_ndarray_like ) except PintTypeError: raise except TypeError: return NotImplemented if zero_or_nan(other, True): # If the other value is 0 (but not Quantity 0) # do the operation without checking units. # We do the calculation instead of just returning the same # value to enforce any shape checking and type casting due to # the operation. self._magnitude = op(self._magnitude, other_magnitude) elif self.dimensionless: self.ito(self.UnitsContainer()) self._magnitude = op(self._magnitude, other_magnitude) else: raise DimensionalityError(self._units, "dimensionless") return self if not self.dimensionality == other.dimensionality: raise DimensionalityError( self._units, other._units, self.dimensionality, other.dimensionality ) # Next we define some variables to make if-clauses more readable. self_non_mul_units = self._get_non_multiplicative_units() is_self_multiplicative = len(self_non_mul_units) == 0 if len(self_non_mul_units) == 1: self_non_mul_unit = self_non_mul_units[0] other_non_mul_units = other._get_non_multiplicative_units() is_other_multiplicative = len(other_non_mul_units) == 0 if len(other_non_mul_units) == 1: other_non_mul_unit = other_non_mul_units[0] # Presence of non-multiplicative units gives rise to several cases. if is_self_multiplicative and is_other_multiplicative: if self._units == other._units: self._magnitude = op(self._magnitude, other._magnitude) # If only self has a delta unit, other determines unit of result. elif self._get_delta_units() and not other._get_delta_units(): self._magnitude = op( self._convert_magnitude(other._units), other._magnitude ) self._units = other._units else: self._magnitude = op(self._magnitude, other.to(self._units)._magnitude) elif ( op == operator.isub and len(self_non_mul_units) == 1 and self._units[self_non_mul_unit] == 1 and not other._has_compatible_delta(self_non_mul_unit) ): if self._units == other._units: self._magnitude = op(self._magnitude, other._magnitude) else: self._magnitude = op(self._magnitude, other.to(self._units)._magnitude) self._units = self._units.rename( self_non_mul_unit, "delta_" + self_non_mul_unit ) elif ( op == operator.isub and len(other_non_mul_units) == 1 and other._units[other_non_mul_unit] == 1 and not self._has_compatible_delta(other_non_mul_unit) ): # we convert to self directly since it is multiplicative self._magnitude = op(self._magnitude, other.to(self._units)._magnitude) elif ( len(self_non_mul_units) == 1 # order of the dimension of offset unit == 1 ? and self._units[self_non_mul_unit] == 1 and other._has_compatible_delta(self_non_mul_unit) ): # Replace offset unit in self by the corresponding delta unit. # This is done to prevent a shift by offset in the to()-call. tu = self._units.rename(self_non_mul_unit, "delta_" + self_non_mul_unit) self._magnitude = op(self._magnitude, other.to(tu)._magnitude) elif ( len(other_non_mul_units) == 1 # order of the dimension of offset unit == 1 ? and other._units[other_non_mul_unit] == 1 and self._has_compatible_delta(other_non_mul_unit) ): # Replace offset unit in other by the corresponding delta unit. # This is done to prevent a shift by offset in the to()-call. tu = other._units.rename(other_non_mul_unit, "delta_" + other_non_mul_unit) self._magnitude = op(self._convert_magnitude(tu), other._magnitude) self._units = other._units else: raise OffsetUnitCalculusError(self._units, other._units) return self @check_implemented def _add_sub(self, other, op): """Perform addition or subtraction operation and return the result. Parameters ---------- other : pint.Quantity or any type accepted by :func:`_to_magnitude` object to be added to / subtracted from self op : function operator function (e.g. operator.add, operator.isub) """ if not self._check(other): # other not from same Registry or not a Quantity if zero_or_nan(other, True): # If the other value is 0 or NaN (but not a Quantity) # do the operation without checking units. # We do the calculation instead of just returning the same # value to enforce any shape checking and type casting due to # the operation. units = self._units magnitude = op( self._magnitude, _to_magnitude(other, self.force_ndarray, self.force_ndarray_like), ) elif self.dimensionless: units = self.UnitsContainer() magnitude = op( self.to(units)._magnitude, _to_magnitude(other, self.force_ndarray, self.force_ndarray_like), ) else: raise DimensionalityError(self._units, "dimensionless") return self.__class__(magnitude, units) if not self.dimensionality == other.dimensionality: raise DimensionalityError( self._units, other._units, self.dimensionality, other.dimensionality ) # Next we define some variables to make if-clauses more readable. self_non_mul_units = self._get_non_multiplicative_units() is_self_multiplicative = len(self_non_mul_units) == 0 if len(self_non_mul_units) == 1: self_non_mul_unit = self_non_mul_units[0] other_non_mul_units = other._get_non_multiplicative_units() is_other_multiplicative = len(other_non_mul_units) == 0 if len(other_non_mul_units) == 1: other_non_mul_unit = other_non_mul_units[0] # Presence of non-multiplicative units gives rise to several cases. if is_self_multiplicative and is_other_multiplicative: if self._units == other._units: magnitude = op(self._magnitude, other._magnitude) units = self._units # If only self has a delta unit, other determines unit of result. elif self._get_delta_units() and not other._get_delta_units(): magnitude = op( self._convert_magnitude_not_inplace(other._units), other._magnitude ) units = other._units else: units = self._units magnitude = op(self._magnitude, other.to(self._units).magnitude) elif ( op == operator.sub and len(self_non_mul_units) == 1 and self._units[self_non_mul_unit] == 1 and not other._has_compatible_delta(self_non_mul_unit) ): if self._units == other._units: magnitude = op(self._magnitude, other._magnitude) else: magnitude = op(self._magnitude, other.to(self._units)._magnitude) units = self._units.rename(self_non_mul_unit, "delta_" + self_non_mul_unit) elif ( op == operator.sub and len(other_non_mul_units) == 1 and other._units[other_non_mul_unit] == 1 and not self._has_compatible_delta(other_non_mul_unit) ): # we convert to self directly since it is multiplicative magnitude = op(self._magnitude, other.to(self._units)._magnitude) units = self._units elif ( len(self_non_mul_units) == 1 # order of the dimension of offset unit == 1 ? and self._units[self_non_mul_unit] == 1 and other._has_compatible_delta(self_non_mul_unit) ): # Replace offset unit in self by the corresponding delta unit. # This is done to prevent a shift by offset in the to()-call. tu = self._units.rename(self_non_mul_unit, "delta_" + self_non_mul_unit) magnitude = op(self._magnitude, other.to(tu).magnitude) units = self._units elif ( len(other_non_mul_units) == 1 # order of the dimension of offset unit == 1 ? and other._units[other_non_mul_unit] == 1 and self._has_compatible_delta(other_non_mul_unit) ): # Replace offset unit in other by the corresponding delta unit. # This is done to prevent a shift by offset in the to()-call. tu = other._units.rename(other_non_mul_unit, "delta_" + other_non_mul_unit) magnitude = op(self._convert_magnitude_not_inplace(tu), other._magnitude) units = other._units else: raise OffsetUnitCalculusError(self._units, other._units) return self.__class__(magnitude, units) @overload def __iadd__(self, other: datetime.datetime) -> datetime.timedelta: # type: ignore[misc] ... @overload def __iadd__(self, other) -> Quantity[_MagnitudeType]: ... def __iadd__(self, other): if isinstance(other, datetime.datetime): return self.to_timedelta() + other elif is_duck_array_type(type(self._magnitude)): return self._iadd_sub(other, operator.iadd) else: return self._add_sub(other, operator.add) def __add__(self, other): if isinstance(other, datetime.datetime): return self.to_timedelta() + other else: return self._add_sub(other, operator.add) __radd__ = __add__ def __isub__(self, other): if is_duck_array_type(type(self._magnitude)): return self._iadd_sub(other, operator.isub) else: return self._add_sub(other, operator.sub) def __sub__(self, other): return self._add_sub(other, operator.sub) def __rsub__(self, other): if isinstance(other, datetime.datetime): return other - self.to_timedelta() else: return -self._add_sub(other, operator.sub) @check_implemented @ireduce_dimensions def _imul_div(self, other, magnitude_op, units_op=None): """Perform multiplication or division operation in-place and return the result. Parameters ---------- other : pint.Quantity or any type accepted by :func:`_to_magnitude` object to be multiplied/divided with self magnitude_op : function operator function to perform on the magnitudes (e.g. operator.mul) units_op : function or None operator function to perform on the units; if None, *magnitude_op* is used (Default value = None) Returns ------- """ if units_op is None: units_op = magnitude_op offset_units_self = self._get_non_multiplicative_units() no_offset_units_self = len(offset_units_self) if not self._check(other): if not self._ok_for_muldiv(no_offset_units_self): raise OffsetUnitCalculusError(self._units, getattr(other, "units", "")) if len(offset_units_self) == 1: if self._units[offset_units_self[0]] != 1 or magnitude_op not in [ operator.mul, operator.imul, ]: raise OffsetUnitCalculusError( self._units, getattr(other, "units", "") ) try: other_magnitude = _to_magnitude( other, self.force_ndarray, self.force_ndarray_like ) except PintTypeError: raise except TypeError: return NotImplemented self._magnitude = magnitude_op(self._magnitude, other_magnitude) self._units = units_op(self._units, self.UnitsContainer()) return self if isinstance(other, self._REGISTRY.Unit): other = 1 * other if not self._ok_for_muldiv(no_offset_units_self): raise OffsetUnitCalculusError(self._units, other._units) elif no_offset_units_self == 1 and len(self._units) == 1: self.ito_root_units() no_offset_units_other = len(other._get_non_multiplicative_units()) if not other._ok_for_muldiv(no_offset_units_other): raise OffsetUnitCalculusError(self._units, other._units) elif no_offset_units_other == 1 and len(other._units) == 1: other.ito_root_units() self._magnitude = magnitude_op(self._magnitude, other._magnitude) self._units = units_op(self._units, other._units) return self @check_implemented @ireduce_dimensions def _mul_div(self, other, magnitude_op, units_op=None): """Perform multiplication or division operation and return the result. Parameters ---------- other : pint.Quantity or any type accepted by :func:`_to_magnitude` object to be multiplied/divided with self magnitude_op : function operator function to perform on the magnitudes (e.g. operator.mul) units_op : function or None operator function to perform on the units; if None, *magnitude_op* is used (Default value = None) Returns ------- """ if units_op is None: units_op = magnitude_op offset_units_self = self._get_non_multiplicative_units() no_offset_units_self = len(offset_units_self) if not self._check(other): if not self._ok_for_muldiv(no_offset_units_self): raise OffsetUnitCalculusError(self._units, getattr(other, "units", "")) if len(offset_units_self) == 1: if self._units[offset_units_self[0]] != 1 or magnitude_op not in [ operator.mul, operator.imul, ]: raise OffsetUnitCalculusError( self._units, getattr(other, "units", "") ) try: other_magnitude = _to_magnitude( other, self.force_ndarray, self.force_ndarray_like ) except PintTypeError: raise except TypeError: return NotImplemented magnitude = magnitude_op(self._magnitude, other_magnitude) units = units_op(self._units, self.UnitsContainer()) return self.__class__(magnitude, units) if isinstance(other, self._REGISTRY.Unit): other = 1 * other new_self = self if not self._ok_for_muldiv(no_offset_units_self): raise OffsetUnitCalculusError(self._units, other._units) elif no_offset_units_self == 1 and len(self._units) == 1: new_self = self.to_root_units() no_offset_units_other = len(other._get_non_multiplicative_units()) if not other._ok_for_muldiv(no_offset_units_other): raise OffsetUnitCalculusError(self._units, other._units) elif no_offset_units_other == 1 and len(other._units) == 1: other = other.to_root_units() magnitude = magnitude_op(new_self._magnitude, other._magnitude) units = units_op(new_self._units, other._units) return self.__class__(magnitude, units) def __imul__(self, other): if is_duck_array_type(type(self._magnitude)): return self._imul_div(other, operator.imul) else: return self._mul_div(other, operator.mul) def __mul__(self, other): return self._mul_div(other, operator.mul) __rmul__ = __mul__ def __matmul__(self, other): return np.matmul(self, other) __rmatmul__ = __matmul__ def __itruediv__(self, other): if is_duck_array_type(type(self._magnitude)): return self._imul_div(other, operator.itruediv) else: return self._mul_div(other, operator.truediv) def __truediv__(self, other): return self._mul_div(other, operator.truediv) def __rtruediv__(self, other): try: other_magnitude = _to_magnitude( other, self.force_ndarray, self.force_ndarray_like ) except PintTypeError: raise except TypeError: return NotImplemented no_offset_units_self = len(self._get_non_multiplicative_units()) if not self._ok_for_muldiv(no_offset_units_self): raise OffsetUnitCalculusError(self._units, "") elif no_offset_units_self == 1 and len(self._units) == 1: self = self.to_root_units() return self.__class__(other_magnitude / self._magnitude, 1 / self._units) __div__ = __truediv__ __rdiv__ = __rtruediv__ __idiv__ = __itruediv__ def __ifloordiv__(self, other): if self._check(other): self._magnitude //= other.to(self._units)._magnitude elif self.dimensionless: self._magnitude = self.to("")._magnitude // other else: raise DimensionalityError(self._units, "dimensionless") self._units = self.UnitsContainer({}) return self @check_implemented def __floordiv__(self, other): if self._check(other): magnitude = self._magnitude // other.to(self._units)._magnitude elif self.dimensionless: magnitude = self.to("")._magnitude // other else: raise DimensionalityError(self._units, "dimensionless") return self.__class__(magnitude, self.UnitsContainer({})) @check_implemented def __rfloordiv__(self, other): if self._check(other): magnitude = other._magnitude // self.to(other._units)._magnitude elif self.dimensionless: magnitude = other // self.to("")._magnitude else: raise DimensionalityError(self._units, "dimensionless") return self.__class__(magnitude, self.UnitsContainer({})) @check_implemented def __imod__(self, other): if not self._check(other): other = self.__class__(other, self.UnitsContainer({})) self._magnitude %= other.to(self._units)._magnitude return self @check_implemented def __mod__(self, other): if not self._check(other): other = self.__class__(other, self.UnitsContainer({})) magnitude = self._magnitude % other.to(self._units)._magnitude return self.__class__(magnitude, self._units) @check_implemented def __rmod__(self, other): if self._check(other): magnitude = other._magnitude % self.to(other._units)._magnitude return self.__class__(magnitude, other._units) elif self.dimensionless: magnitude = other % self.to("")._magnitude return self.__class__(magnitude, self.UnitsContainer({})) else: raise DimensionalityError(self._units, "dimensionless") @check_implemented def __divmod__(self, other): if not self._check(other): other = self.__class__(other, self.UnitsContainer({})) q, r = divmod(self._magnitude, other.to(self._units)._magnitude) return ( self.__class__(q, self.UnitsContainer({})), self.__class__(r, self._units), ) @check_implemented def __rdivmod__(self, other): if self._check(other): q, r = divmod(other._magnitude, self.to(other._units)._magnitude) unit = other._units elif self.dimensionless: q, r = divmod(other, self.to("")._magnitude) unit = self.UnitsContainer({}) else: raise DimensionalityError(self._units, "dimensionless") return (self.__class__(q, self.UnitsContainer({})), self.__class__(r, unit)) @check_implemented def __ipow__(self, other): if not is_duck_array_type(type(self._magnitude)): return self.__pow__(other) try: _to_magnitude(other, self.force_ndarray, self.force_ndarray_like) except PintTypeError: raise except TypeError: return NotImplemented else: if not self._ok_for_muldiv: raise OffsetUnitCalculusError(self._units) if is_duck_array_type(type(getattr(other, "_magnitude", other))): # arrays are refused as exponent, because they would create # len(array) quantities of len(set(array)) different units # unless the base is dimensionless. Ensure dimensionless # units are reduced to "dimensionless". # Note: this will strip Units of degrees or radians from Quantity if self.dimensionless: if getattr(other, "dimensionless", False): self._magnitude = self.m_as("") ** other.m_as("") self._units = self.UnitsContainer() return self elif not getattr(other, "dimensionless", True): raise DimensionalityError(other._units, "dimensionless") else: self._magnitude = self.m_as("") ** other self._units = self.UnitsContainer() return self elif np.size(other) > 1: raise DimensionalityError( self._units, "dimensionless", extra_msg=". Quantity array exponents are only allowed if the " "base is dimensionless", ) if other == 1: return self elif other == 0: self._units = self.UnitsContainer() else: if not self._is_multiplicative: if self._REGISTRY.autoconvert_offset_to_baseunit: self.ito_base_units() else: raise OffsetUnitCalculusError(self._units) if getattr(other, "dimensionless", False): other = other.to_base_units().magnitude self._units **= other elif not getattr(other, "dimensionless", True): raise DimensionalityError(self._units, "dimensionless") else: self._units **= other self._magnitude **= _to_magnitude( other, self.force_ndarray, self.force_ndarray_like ) return self @check_implemented def __pow__(self, other) -> Quantity[_MagnitudeType]: try: _to_magnitude(other, self.force_ndarray, self.force_ndarray_like) except PintTypeError: raise except TypeError: return NotImplemented else: if not self._ok_for_muldiv: raise OffsetUnitCalculusError(self._units) if is_duck_array_type(type(getattr(other, "_magnitude", other))): # arrays are refused as exponent, because they would create # len(array) quantities of len(set(array)) different units # unless the base is dimensionless. # Note: this will strip Units of degrees or radians from Quantity if self.dimensionless: if getattr(other, "dimensionless", False): return self.__class__( self._convert_magnitude_not_inplace(self.UnitsContainer()) ** other.m_as("") ) elif not getattr(other, "dimensionless", True): raise DimensionalityError(other._units, "dimensionless") else: return self.__class__( self._convert_magnitude_not_inplace(self.UnitsContainer()) ** other ) elif np.size(other) > 1: raise DimensionalityError( self._units, "dimensionless", extra_msg=". Quantity array exponents are only allowed if the " "base is dimensionless", ) new_self = self if other == 1: return self elif other == 0: exponent = 0 units = self.UnitsContainer() else: if not self._is_multiplicative: if self._REGISTRY.autoconvert_offset_to_baseunit: new_self = self.to_root_units() else: raise OffsetUnitCalculusError(self._units) if getattr(other, "dimensionless", False): exponent = other.to_root_units().magnitude units = new_self._units**exponent elif not getattr(other, "dimensionless", True): raise DimensionalityError(other._units, "dimensionless") else: exponent = _to_magnitude( other, force_ndarray=False, force_ndarray_like=False ) units = new_self._units**exponent magnitude = new_self._magnitude**exponent return self.__class__(magnitude, units) @check_implemented def __rpow__(self, other) -> Quantity[_MagnitudeType]: try: _to_magnitude(other, self.force_ndarray, self.force_ndarray_like) except PintTypeError: raise except TypeError: return NotImplemented else: if not self.dimensionless: raise DimensionalityError(self._units, "dimensionless") new_self = self.to_root_units() return other**new_self._magnitude def __abs__(self) -> Quantity[_MagnitudeType]: return self.__class__(abs(self._magnitude), self._units) def __round__(self, ndigits: Optional[int] = 0) -> Quantity[int]: return self.__class__(round(self._magnitude, ndigits=ndigits), self._units) def __pos__(self) -> Quantity[_MagnitudeType]: return self.__class__(operator.pos(self._magnitude), self._units) def __neg__(self) -> Quantity[_MagnitudeType]: return self.__class__(operator.neg(self._magnitude), self._units) @check_implemented def __eq__(self, other): def bool_result(value): nonlocal other if not is_duck_array_type(type(self._magnitude)): return value if isinstance(other, Quantity): other = other._magnitude template, _ = np.broadcast_arrays(self._magnitude, other) return np.full_like(template, fill_value=value, dtype=np.bool_) # We compare to the base class of Quantity because # each Quantity class is unique. if not isinstance(other, Quantity): if zero_or_nan(other, True): # Handle the special case in which we compare to zero or NaN # (or an array of zeros or NaNs) if self._is_multiplicative: # compare magnitude return eq(self._magnitude, other, False) else: # compare the magnitude after converting the # non-multiplicative quantity to base units if self._REGISTRY.autoconvert_offset_to_baseunit: return eq(self.to_base_units()._magnitude, other, False) else: raise OffsetUnitCalculusError(self._units) if self.dimensionless: return eq( self._convert_magnitude_not_inplace(self.UnitsContainer()), other, False, ) return bool_result(False) # TODO: this might be expensive. Do we even need it? if eq(self._magnitude, 0, True) and eq(other._magnitude, 0, True): return bool_result(self.dimensionality == other.dimensionality) if self._units == other._units: return eq(self._magnitude, other._magnitude, False) try: return eq( self._convert_magnitude_not_inplace(other._units), other._magnitude, False, ) except DimensionalityError: return bool_result(False) @check_implemented def __ne__(self, other): out = self.__eq__(other) if is_duck_array_type(type(out)): return np.logical_not(out) return not out @check_implemented def compare(self, other, op): if not isinstance(other, Quantity): if self.dimensionless: return op( self._convert_magnitude_not_inplace(self.UnitsContainer()), other ) elif zero_or_nan(other, True): # Handle the special case in which we compare to zero or NaN # (or an array of zeros or NaNs) if self._is_multiplicative: # compare magnitude return op(self._magnitude, other) else: # compare the magnitude after converting the # non-multiplicative quantity to base units if self._REGISTRY.autoconvert_offset_to_baseunit: return op(self.to_base_units()._magnitude, other) else: raise OffsetUnitCalculusError(self._units) else: raise ValueError("Cannot compare Quantity and {}".format(type(other))) # Registry equality check based on util.SharedRegistryObject if self._REGISTRY is not other._REGISTRY: mess = "Cannot operate with {} and {} of different registries." raise ValueError( mess.format(self.__class__.__name__, other.__class__.__name__) ) if self._units == other._units: return op(self._magnitude, other._magnitude) if self.dimensionality != other.dimensionality: raise DimensionalityError( self._units, other._units, self.dimensionality, other.dimensionality ) return op(self.to_root_units().magnitude, other.to_root_units().magnitude) __lt__ = lambda self, other: self.compare(other, op=operator.lt) __le__ = lambda self, other: self.compare(other, op=operator.le) __ge__ = lambda self, other: self.compare(other, op=operator.ge) __gt__ = lambda self, other: self.compare(other, op=operator.gt) def __bool__(self) -> bool: # Only cast when non-ambiguous (when multiplicative unit) if self._is_multiplicative: return bool(self._magnitude) else: raise ValueError("Boolean value of Quantity with offset unit is ambiguous.") __nonzero__ = __bool__ # NumPy function/ufunc support __array_priority__ = 17 def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): if method != "__call__": # Only handle ufuncs as callables return NotImplemented # Replicate types from __array_function__ types = set( type(arg) for arg in list(inputs) + list(kwargs.values()) if hasattr(arg, "__array_ufunc__") ) return numpy_wrap("ufunc", ufunc, inputs, kwargs, types) def __array_function__(self, func, types, args, kwargs): return numpy_wrap("function", func, args, kwargs, types) _wrapped_numpy_methods = ["flatten", "astype", "item"] def _numpy_method_wrap(self, func, *args, **kwargs): """Convenience method to wrap on the fly NumPy ndarray methods taking care of the units. """ # Set input units if needed if func.__name__ in set_units_ufuncs: self.__ito_if_needed(set_units_ufuncs[func.__name__][0]) value = func(*args, **kwargs) # Set output units as needed if func.__name__ in ( matching_input_copy_units_output_ufuncs + copy_units_output_ufuncs + self._wrapped_numpy_methods ): output_unit = self._units elif func.__name__ in set_units_ufuncs: output_unit = set_units_ufuncs[func.__name__][1] elif func.__name__ in matching_input_set_units_output_ufuncs: output_unit = matching_input_set_units_output_ufuncs[func.__name__] elif func.__name__ in op_units_output_ufuncs: output_unit = get_op_output_unit( op_units_output_ufuncs[func.__name__], self.units, list(args) + list(kwargs.values()), self._magnitude.size, ) else: output_unit = None if output_unit is not None: return self.__class__(value, output_unit) else: return value def __array__(self, t=None) -> np.ndarray: warnings.warn( "The unit of the quantity is stripped when downcasting to ndarray.", UnitStrippedWarning, stacklevel=2, ) return _to_magnitude(self._magnitude, force_ndarray=True) def clip(self, min=None, max=None, out=None, **kwargs): if min is not None: if isinstance(min, self.__class__): min = min.to(self).magnitude elif self.dimensionless: pass else: raise DimensionalityError("dimensionless", self._units) if max is not None: if isinstance(max, self.__class__): max = max.to(self).magnitude elif self.dimensionless: pass else: raise DimensionalityError("dimensionless", self._units) return self.__class__(self.magnitude.clip(min, max, out, **kwargs), self._units) def fill(self: Quantity[np.ndarray], value) -> None: self._units = value._units return self.magnitude.fill(value.magnitude) def put(self: Quantity[np.ndarray], indices, values, mode="raise") -> None: if isinstance(values, self.__class__): values = values.to(self).magnitude elif self.dimensionless: values = self.__class__(values, "").to(self) else: raise DimensionalityError("dimensionless", self._units) self.magnitude.put(indices, values, mode) @property def real(self) -> Quantity[_MagnitudeType]: return self.__class__(self._magnitude.real, self._units) @property def imag(self) -> Quantity[_MagnitudeType]: return self.__class__(self._magnitude.imag, self._units) @property def T(self): return self.__class__(self._magnitude.T, self._units) @property def flat(self): for v in self._magnitude.flat: yield self.__class__(v, self._units) @property def shape(self) -> Shape: return self._magnitude.shape @shape.setter def shape(self, value): self._magnitude.shape = value def searchsorted(self, v, side="left", sorter=None): if isinstance(v, self.__class__): v = v.to(self).magnitude elif self.dimensionless: v = self.__class__(v, "").to(self) else: raise DimensionalityError("dimensionless", self._units) return self.magnitude.searchsorted(v, side) def dot(self, b): """Dot product of two arrays. Wraps np.dot(). """ return np.dot(self, b) @method_wraps("prod") def prod(self, *args, **kwargs): """Return the product of quantity elements over a given axis Wraps np.prod(). """ return np.prod(self, *args, **kwargs) def __ito_if_needed(self, to_units): if self.unitless and to_units == "radian": return self.ito(to_units) def __len__(self) -> int: return len(self._magnitude) def __getattr__(self, item) -> Any: if item.startswith("__array_"): # Handle array protocol attributes other than `__array__` raise AttributeError(f"Array protocol attribute {item} not available.") elif item in HANDLED_UFUNCS or item in self._wrapped_numpy_methods: magnitude_as_duck_array = _to_magnitude( self._magnitude, force_ndarray_like=True ) try: attr = getattr(magnitude_as_duck_array, item) return functools.partial(self._numpy_method_wrap, attr) except AttributeError: raise AttributeError( f"NumPy method {item} not available on {type(magnitude_as_duck_array)}" ) except TypeError as exc: if "not callable" in str(exc): raise AttributeError( f"NumPy method {item} not callable on {type(magnitude_as_duck_array)}" ) else: raise exc try: return getattr(self._magnitude, item) except AttributeError: raise AttributeError( "Neither Quantity object nor its magnitude ({}) " "has attribute '{}'".format(self._magnitude, item) ) def __getitem__(self, key): try: return type(self)(self._magnitude[key], self._units) except PintTypeError: raise except TypeError: raise TypeError( "Neither Quantity object nor its magnitude ({})" "supports indexing".format(self._magnitude) ) def __setitem__(self, key, value): try: if np.ma.is_masked(value) or math.isnan(value): self._magnitude[key] = value return except TypeError: pass try: if isinstance(value, self.__class__): factor = self.__class__( value.magnitude, value._units / self._units ).to_root_units() else: factor = self.__class__(value, self._units ** (-1)).to_root_units() if isinstance(factor, self.__class__): if not factor.dimensionless: raise DimensionalityError( value, self.units, extra_msg=". Assign a quantity with the same dimensionality " "or access the magnitude directly as " f"`obj.magnitude[{key}] = {value}`.", ) self._magnitude[key] = factor.magnitude else: self._magnitude[key] = factor except PintTypeError: raise except TypeError as exc: raise TypeError( f"Neither Quantity object nor its magnitude ({self._magnitude}) " "supports indexing" ) from exc def tolist(self): units = self._units try: values = self._magnitude.tolist() if not isinstance(values, list): return self.__class__(values, units) return [ self.__class__(value, units).tolist() if isinstance(value, list) else self.__class__(value, units) for value in self._magnitude.tolist() ] except AttributeError: raise AttributeError( f"Magnitude '{type(self._magnitude).__name__}' does not support tolist." ) # Measurement support def plus_minus(self, error, relative=False): if isinstance(error, self.__class__): if relative: raise ValueError("{} is not a valid relative error.".format(error)) error = error.to(self._units).magnitude else: if relative: error = error * abs(self.magnitude) return self._REGISTRY.Measurement(copy.copy(self.magnitude), error, self._units) def _get_unit_definition(self, unit: str) -> UnitDefinition: try: return self._REGISTRY._units[unit] except KeyError: # pint#1062: The __init__ method of this object added the unit to # UnitRegistry._units (e.g. units with prefix are added on the fly the # first time they're used) but the key was later removed, e.g. because # a Context with unit redefinitions was deactivated. self._REGISTRY.parse_units(unit) return self._REGISTRY._units[unit] # methods/properties that help for math operations with offset units @property def _is_multiplicative(self) -> bool: """Check if the Quantity object has only multiplicative units.""" return not self._get_non_multiplicative_units() def _get_non_multiplicative_units(self) -> List[str]: """Return a list of the of non-multiplicative units of the Quantity object.""" return [ unit for unit in self._units if not self._get_unit_definition(unit).is_multiplicative ] def _get_delta_units(self) -> List[str]: """Return list of delta units ot the Quantity object.""" return [u for u in self._units if u.startswith("delta_")] def _has_compatible_delta(self, unit: str) -> bool: """ "Check if Quantity object has a delta_unit that is compatible with unit""" deltas = self._get_delta_units() if "delta_" + unit in deltas: return True # Look for delta units with same dimension as the offset unit offset_unit_dim = self._get_unit_definition(unit).reference return any( self._get_unit_definition(d).reference == offset_unit_dim for d in deltas ) def _ok_for_muldiv(self, no_offset_units=None) -> bool: """Checks if Quantity object can be multiplied or divided""" is_ok = True if no_offset_units is None: no_offset_units = len(self._get_non_multiplicative_units()) if no_offset_units > 1: is_ok = False if no_offset_units == 1: if len(self._units) > 1: is_ok = False if ( len(self._units) == 1 and not self._REGISTRY.autoconvert_offset_to_baseunit ): is_ok = False if next(iter(self._units.values())) != 1: is_ok = False return is_ok def to_timedelta(self: Quantity[float]) -> datetime.timedelta: return datetime.timedelta(microseconds=self.to("microseconds").magnitude) # Dask.array.Array ducking def __dask_graph__(self): if isinstance(self._magnitude, dask_array.Array): return self._magnitude.__dask_graph__() else: return None def __dask_keys__(self): return self._magnitude.__dask_keys__() def __dask_tokenize__(self): from dask.base import tokenize return (Quantity, tokenize(self._magnitude), self.units) @property def __dask_optimize__(self): return dask_array.Array.__dask_optimize__ @property def __dask_scheduler__(self): return dask_array.Array.__dask_scheduler__ def __dask_postcompute__(self): func, args = self._magnitude.__dask_postcompute__() return self._dask_finalize, (func, args, self.units) def __dask_postpersist__(self): func, args = self._magnitude.__dask_postpersist__() return self._dask_finalize, (func, args, self.units) @staticmethod def _dask_finalize(results, func, args, units): values = func(results, *args) return Quantity(values, units) @check_dask_array def compute(self, **kwargs): """Compute the Dask array wrapped by pint.Quantity. Parameters ---------- **kwargs : dict Any keyword arguments to pass to ``dask.compute``. Returns ------- pint.Quantity A pint.Quantity wrapped numpy array. """ (result,) = compute(self, **kwargs) return result @check_dask_array def persist(self, **kwargs): """Persist the Dask Array wrapped by pint.Quantity. Parameters ---------- **kwargs : dict Any keyword arguments to pass to ``dask.persist``. Returns ------- pint.Quantity A pint.Quantity wrapped Dask array. """ (result,) = persist(self, **kwargs) return result @check_dask_array def visualize(self, **kwargs): """Produce a visual representation of the Dask graph. The graphviz library is required. Parameters ---------- **kwargs : dict Any keyword arguments to pass to ``dask.visualize``. Returns ------- """ visualize(self, **kwargs)
_Quantity = Quantity def build_quantity_class(registry: BaseRegistry) -> Type[Quantity]: class Quantity(_Quantity): _REGISTRY = registry return Quantity